

Article

Iron Oxide Nanoparticles from *Ocimum basilicum* Leaf Extract: A Green route to Synthesis, characterization and Applications

B. Lavanya^{1,2}, M. V. Ramana³ and Y.Aparna⁴

¹ Asst. Professor, Department of Physics, Anurag University, Hyderabad, Telangana, India

² Research Scholar, Department of Physics, JNT University, Hyderabad, Telangana, India

³ Professor, Department of Physics, Anurag University, Hyderabad, Telangana, India

⁴. Professor, Department of Physics, JNT University, Hyderabad, Telangana, India

Abstract

Citation:

Lavanya. B , Ramana.M.V and Y.Aparna,

Iron Oxide Nanoparticles
from *Ocimum basilicum* Leaf
Extract: A Green route to
Synthesis, characterization
and Applications,

J.Adv.Sci.Eng&Tech,
1,1,2025, 10-18

Received on
12th July 2024

Revised on
17th September 2024

Accepted on
23rd December 2024

Copyright: © 2025 by the authors.
Licensee AQIE , Prasanthi nagar,
Khammam, Telangana, India. This
article is an open access article
distributed under the terms and
conditions of the Creative
Commons Attribution (CC BY)
license.

In this study, iron oxide nanoparticles (IONPs) were synthesized through an environmentally friendly method utilizing an aqueous extract derived from *Ocimum basilicum* leaves. Various analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were employed to characterize the nanoparticles. The resulting IONPs demonstrated notable antioxidant and antimicrobial properties, suggesting their usefulness in both biomedical and environmental applications.

Key words: Iron oxide nanoparticles, Green synthesis, FTIR, SEM , TEM and antibacterial activities

1. Introduction

Nanotechnology has significantly transformed multiple scientific fields, with nanoparticles emerging as critical components due to their distinctive physicochemical characteristics. Among them, iron oxide nanoparticles (IONPs) have attracted considerable interest because of their magnetic behavior, biocompatibility, and catalytic potential, making them highly suitable for diverse applications such as drug delivery, medical imaging, and environmental cleanup.

Of the eight known forms of iron oxides, hematite, magnetite, and maghemite are especially noteworthy due to their wide-ranging industrial and biomedical applications. Hematite (α -Fe₂O₃), the most thermodynamically stable form, is commonly utilized in gas sensors, pigments, and catalysts, thanks to its resistance to corrosion and cost-effectiveness. Additionally, hematite can serve as a precursor for synthesizing magnetite and maghemite.

Magnetite (Fe_3O_4) possesses an inverse spinel crystal structure with a face-centered cubic lattice. In this arrangement, Fe^{2+} ions occupy half of the octahedral sites, while Fe^{3+} ions are equally distributed between the remaining octahedral and tetrahedral positions.

Maghemite ($\gamma\text{-Fe}_2\text{O}_3$), often regarded as the fully oxidized form of magnetite, consists of 32 oxide ions (O^{2-}), $21\frac{1}{3}$ Fe^{3+} ions, and $2\frac{1}{3}$ vacancies per unit cell. These ions form a closely packed cubic structure in which ferric ions are spread across both tetrahedral and octahedral sites.

Iron oxide nanoparticles are gaining increasing attention for their roles in various advanced technologies, including ferrofluids, magnetic data storage, targeted drug delivery, tissue engineering, cancer therapy, sensors, antibacterial treatments, magnetic resonance imaging (MRI), and environmental remediation.

Traditionally, iron oxide nanoparticles have been synthesized using physical and chemical methods. However, these techniques often involve high temperatures, elevated pressures, and hazardous chemicals, which pose environmental and safety concerns. To address these limitations, green synthesis approaches have been developed.

Biosynthesis methods offer a more sustainable and eco-friendly alternative by utilizing natural, non-toxic materials. These methods have successfully employed plant extracts, fruits, and naturally derived polymers for the synthesis of iron oxide nanoparticles, providing a safer and more environmentally conscious route to nanoparticle production.

Conventional approaches for synthesizing iron oxide nanoparticles (IONPs) typically require hazardous chemicals and consume large amounts of energy. In contrast, green synthesis provides an environmentally friendly and sustainable alternative by employing biological materials, such as plant extracts, which function as both reducing and stabilizing agents.

Ocimum basilicum, commonly known for its abundant phytochemicals—including flavonoids, phenolic compounds, and alkaloids—has the potential to assist in the reduction of metal ions and the stabilization of the formed nanoparticles. This research focuses on the green synthesis of IONPs using *Ocimum basilicum* leaf extract and investigates their structural, morphological, and biological characteristics.

2. Materials and Methods

2.1. Collection and Preparation of Plant Extract

Fresh leaves of OCIMUM BASILIUM were collected from Nanadana Vanam, a visitors park maintained by forest department of Government of Telangana near Medipally, Hyderabad, authenticated by Department of

Botany, Osmania University, and washed thoroughly with distilled water to remove impurities. The cleaned leaves were shade-dried for seven days and ground into a fine powder using a mechanical grinder. To prepare the aqueous extract, 20 g of the powdered leaves were boiled in 200 mL of distilled water at 80°C for 45 minutes. The mixture was cooled to room temperature and filtered using Whatman No. 1 filter paper. The filtrate was stored at 4°C for further use.

2.2. Synthesis of Iron Oxide Nanoparticles

A 0.1 M ferric chloride ($\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$) solution was prepared using distilled water. For the synthesis of iron oxide nanoparticles (IONPs), 30 mL of *Ocimum basilicum* leaf extract was gradually introduced into 100 mL of the ferric chloride solution while continuously stirring the mixture at 75°C. A visible color change from yellowish to dark brown signified the formation of IONPs. The reaction was allowed to proceed with continuous stirring for an additional two hours to ensure completion. The synthesized nanoparticles were collected by centrifuging the solution at 10,000 rpm for 30 minutes. The precipitate was then washed three times with distilled water and ethanol to eliminate any residual impurities and unreacted materials. Finally, the purified nanoparticles were dried at 75°C for 18 hours.

2.3. Characterization Techniques

2.3.1. UV-Visible Spectroscopy

The optical properties of the synthesized IONPs were analyzed using a UV–Visible spectrophotometer in the range of 200–800 nm. A characteristic absorption peak at 301 nm confirmed the formation of IONPs.

2.3.2. Fourier-Transform Infrared Spectroscopy (FTIR)

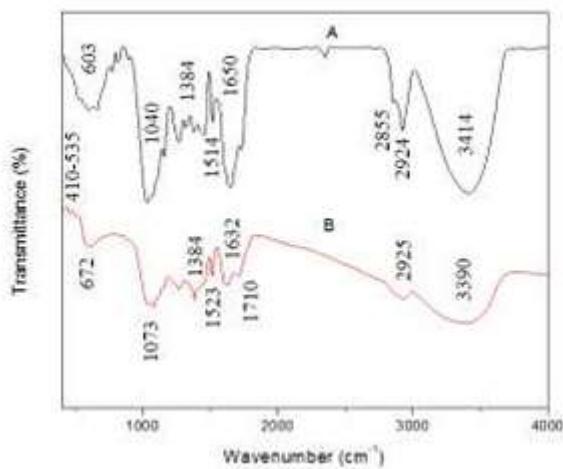


Fig.1. FTIR of a) leaf extract and b) IONPs

Fourier-transform infrared (FTIR) spectroscopy was utilized to identify the functional groups responsible for the reduction and stabilization of iron oxide nanoparticles (IONPs). The FTIR spectrum of the synthesized nanoparticles displayed distinct absorption bands at 3274 cm^{-1} , 1688 cm^{-1} , and 567 cm^{-1} , corresponding to O–H stretching (hydroxyl groups), C=O stretching (carbonyl groups), and Fe–O vibrations, respectively—indicating successful nanoparticle formation and the involvement of these functional groups in the synthesis process.

The FTIR spectrum of the *Ocimum basilicum* leaf extract revealed the presence of various functional groups that may contribute to nanoparticle synthesis. A broad peak at 3416 cm^{-1} was attributed to O–H stretching, while peaks at 2923 cm^{-1} and 2856 cm^{-1} were indicative of asymmetric and symmetric stretching of methylene C–H bonds. A strong absorption at 1727 cm^{-1} suggested the presence of ketones or carboxylic acids. The peak at 1651 cm^{-1} was associated with alkenyl C=C stretching, and a band at 1516 cm^{-1} indicated aromatic C=C–C stretching. The absorption at 1458 cm^{-1} corresponded to methylene C–H bending.

Additional peaks at 1321 cm^{-1} and 1272 cm^{-1} were characteristic of in-plane O–H bending vibrations. The bands at 1156 cm^{-1} and 1042 cm^{-1} were assigned to skeletal C–C vibrations. Aromatic C–H out-of-plane bending was evidenced by peaks at 825 cm^{-1} and 776 cm^{-1} . The signal at 669 cm^{-1} indicated alkyne C–H bending, while the peak at 604 cm^{-1} was associated with S–S stretching.

Similarly, the FTIR spectrum of the synthesized nanoparticles revealed peaks at 3391 cm^{-1} (O–H stretching), 2926 cm^{-1} (methylene C–H asymmetric stretching), and 1712 cm^{-1} (ketone or carboxylic acid). A band at 1630 cm^{-1} corresponded to alkenyl C=C stretching, while 1524 cm^{-1} was attributed to aromatic C=C–C stretching. The peak at 1386 cm^{-1} reflected C–H bending, and the signal at 1276 cm^{-1} indicated in-plane O–H bending. Skeletal C–C vibrations were observed at 1074 cm^{-1} and 1042 cm^{-1} . Alkyne C–H bending was seen at 673 cm^{-1} , and a range of peaks from 412 cm^{-1} to 536 cm^{-1} confirmed the presence of Fe–O bonds, characteristic of Fe_3O_4 nanoparticles.

2.3.3. X-ray Diffraction (XRD)

XRD patterns were recorded using Cu K α radiation ($\lambda = 1.5406\text{ \AA}$) in the 2θ range of 20° – 90° .

The XRD analysis exhibited peaks at; 30.22° , 35.58° , 43.27° , 53.28° , 57.27° , 62.61° , 68.29° and 74.47° corresponding to 220, 331, 400, 422, 551, 440, 533 and 553 respectively which indicates the inverse spinel structure of Fe_3O_4 shows the crystallinity and high purity of synthesized Fe_3O_4 nanoparticles. The iron oxide nanoparticles were in the size range of 36nm to 48nm.

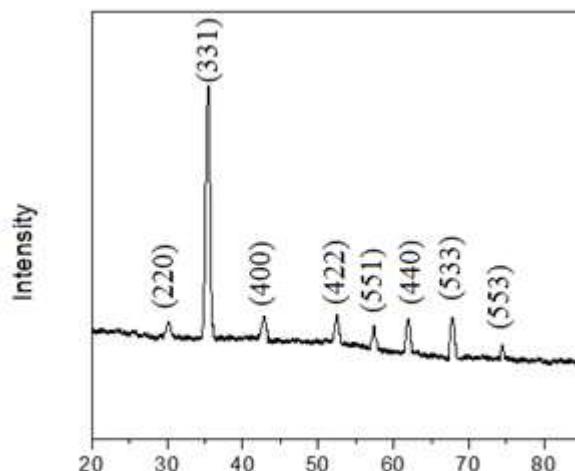


Fig.2. XRD pattern of the synthesized IONPs

2.3.4. Scanning Electron Microscopy (SEM)

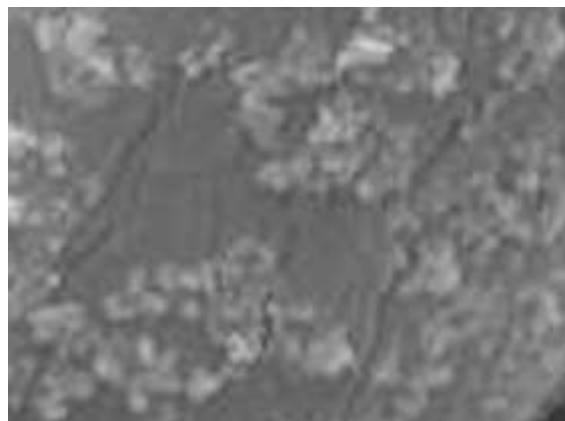


Fig.3. SEM images of the synthesized IONPs.

SEM analyses revealed that the IONPs were predominantly spherical with slight agglomeration. The average particle size was found to be 24–36 nm, consistent with previous studies .

2.4. Biological Activity Assessment

2.4.1. Antioxidant Activity

The antioxidant potential of the IONPs was evaluated using DPPH and ABTS assays. In the DPPH assay, the IONPs exhibited an IC_{50} value of 53.1 μ g/mL, while in the ABTS assay, the IC_{50} was 51.3 μ g/mL, indicating significant free radical scavenging activity .

2.4.2. Antimicrobial Activity

The antimicrobial properties of the synthesized iron oxide nanoparticles (IONPs) were evaluated using the disc diffusion technique against selected microbial strains, including *Staphylococcus aureus*, *Escherichia coli*, *Candida albicans*, and *Candida tropicalis*. The nanoparticles exhibited inhibition zones of 13 mm for both *S. aureus* and *E. coli*, while zones of 15 mm and 13 mm were observed for *C. tropicalis* and *C. albicans*, respectively..

3. Results and Discussion

3.1. Characterization of Synthesized Nanoparticles

UV–Visible spectroscopy validated the successful synthesis of iron oxide nanoparticles (IONPs), displaying a distinct absorption peak at 301 nm. FTIR results suggested that plant-derived phytochemicals played a key role in reducing and stabilizing the nanoparticles. The X-ray diffraction (XRD) pattern corresponded to the standard magnetite phase, confirming the crystalline nature of the particles. Scanning electron microscopy (SEM) revealed that the nanoparticles were predominantly spherical, with an average diameter ranging between 24 and 36 nm..

3.2. Biological Activities

The synthesized IONPs demonstrated significant antioxidant activity, comparable to standard antioxidants like ascorbic acid. The antimicrobial studies revealed effective inhibition of both bacterial and fungal pathogens, suggesting potential applications in antimicrobial formulations.

3.3. Comparative Analysis

When compared to iron oxide nanoparticles (IONPs) produced through other plant-based methods, those synthesized using *Ocimum basilicum* leaf extract exhibit comparable, and in some cases enhanced, physicochemical traits and biological activities:

- IONPs prepared with *Psidium guajava* leaf extract have been reported to possess strong antimicrobial effects against various pathogenic microbes. Similarly, IONPs derived from *Ocimum basilicum* show equivalent antimicrobial performance, highlighting their promise for biomedical uses and environmental sanitation.
- Nanoparticles synthesized with *Melia azedarach* leaf extract demonstrate similar optical and structural properties, as revealed by UV–Visible absorption and FTIR spectroscopy. The spectral data suggest effective capping and stabilization by phytochemicals, a feature also evident in *Ocimum basilicum*-mediated IONPs, confirming successful surface modification and nanoparticle synthesis.

- Likewise, IONPs fabricated using *Calotropis procera* leaf extract are characterized by uniform particle size and notable antimicrobial activity. The nanoparticles generated from *Ocimum basilicum* exhibit similar size distribution, as confirmed by SEM and TEM imaging, along with comparable antimicrobial efficacy, reinforcing their stability and functional bioactivity.
- These comparative results confirm that *Ocimum basilicum* leaf extract serves as an effective and dependable natural reducing and stabilizing agent for the eco-friendly synthesis of biologically active iron oxide nanoparticles (IONPs). The similar characteristics observed across different plant-mediated methods highlight the promise of *O. basilicum* as a sustainable and readily available resource for producing functional nanoparticles with a wide range of applications.

4. Conclusion

This study successfully demonstrates the environmentally friendly synthesis of iron oxide nanoparticles utilizing *Ocimum basilicum* leaf extract. The produced nanoparticles are crystalline and spherical in shape, exhibiting notable antioxidant and antimicrobial properties. This green synthesis method provides a sustainable pathway for generating IONPs, with promising uses in biomedical and environmental fields.

References

1. Zúñiga-Miranda, J., et al. "Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity." *Nanomaterials*, vol. 13, no. 22, 2023, p. 2919.
2. Ashraf, I., Singh, N., Agarwal, A. "Green synthesis of iron oxide nanoparticles using Amla seed for methylene blue dye removal from water." *Materials Today: Proceedings*, vol. 72, 2023, pp. 311–316.
3. Nadeem, F., et al. "Characterization, Antiplasmoidal and Cytotoxic Activities of Green Synthesized Iron Oxide Nanoparticles Using Nephrolepis exaltata Aqueous Extract." *Molecules*, vol. 27, no. 15, 2022, p. 4931.
4. Singh, A., et al. "Leaf Extract Mediated Green Synthesis of Iron-Oxide Nanoparticles (FeO-NPs) by Using Hibiscus rosa-sinensis (China rose): A Potential Approach and Its Biological Application." *Orbital: The Electronic Journal of Chemistry*, vol. 16, no. 4, 2025, pp. 271–278.
5. Hasoon, R. N., et al. "Eco-Friendly Synthesis and Characterization of Iron Oxide (α -Fe₂O₃) Nanoparticles Using Macromolecules from Pomegranate Peel Extract." *Macromolecular Symposia*, vol. 414, no. 1, 2025, p. 2400231.
6. Balkrishna, A., et al. "Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress." *Oxidative Medicine and Cellular Longevity*, vol. 2021, 2021, p. 3155962
7. Karpagavinyagam, P., and Vedhi, C. "Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract." *Vacuum*, vol. 160, 2019, pp. 286–292.

8. Jagadeesan, S., et al. "Green synthesis of iron oxide nanoparticles for biomedical application and environmental remediation: A review." *ResearchGate*, 2021
9. Harshiny, M., et al. "Green synthesis of iron oxide nanoparticles using Amaranthus dubius leaf extract." *Journal of Nanoscience and Nanotechnology*, vol. 15, no. 12, 2015, pp. 9730–9734.
10. Iqbal, M., et al. "Green synthesis of iron oxide nanoparticles using Rhamnella gilgitica leaf extract." *Materials Research Express*, vol. 7, no. 3, 2020, p. 03501.
11. Wu, W., et al., Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. *The Journal of Physical Chemistry C*, 2010. 114(39): p. 16092-16103.
12. Boxall, C., G. Kelsall, and Z. Zhang, Photoelectrophoresis of colloidal iron oxides. Part 2.—Magnetite (Fe₃O₄). *Journal of the Chemical Society, Faraday Transactions*, 1996. 92(5): p. 791-802.
13. Trabulo, S., et al., Multifunctionalized iron oxide nano particles for selective targeting of pancreatic cancer cells. *Biochimica et Biophysica Acta (BBA)-General Subjects*, 2017.
14. Sun, Z., et al., Biodistribution of negatively charged iron oxide nano particles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). *Nanomedicine: Nanotechnology, Biology and Medicine*, 2016. 12(7): p. 1775-1784.
15. Wu, W., et al., Recent progress on magnetic iron oxide nano particles: synthesis, surface functional strategies and biomedical applications. *Science and technology of advanced materials*, 2015. 16(2): p. 023501.
16. Xu, P., et al., Use of iron oxide nanomaterials in wastewater treatment: a review. *Science of the Total Environment*, 2012. 424: p. 1-10.
17. Li, J., et al., Aqueous-phase synthesis of iron oxide nano particles and composites for cancer diagnosis and therapy. *Advances in Colloid and Interface Science*, 2017.
18. Wang, Z., et al., Active targeting theranostic iron oxide nano particles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. *Biomaterials*, 2017. 127: p. 25-35.
19. Khandhar, A., et al., Evaluation of PEG-coated iron oxide nano particles as blood pool tracers for preclinical magnetic particle imaging. *Nanoscale*, 2017.
20. Martínez-Cabanas, M., et al., Green synthesis of iron oxide nano particles. Development of magnetic hybrid materials for efficient As (V) removal. *Chemical Engineering Journal*, 2016. 301: p. 83-91.
21. Ling, D., N. Lee, and T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nano particles for medical applications. *Accounts of chemical research*, 2015. 48(5): p. 1276-1285.
22. Phumying, S., et al., Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe₃O₄) nano particles. *Applied Physics A*, 2013. 111(4): p. 1187-1193.

23. Yew, Y.P., et al., Green synthesis of magnetite (Fe₃O₄) nano particles using seaweed (*Kappaphycus alvarezii*) extract. *Nanoscale research letters*, 2016. 11(1): p. 1-7.
24. Taran, M., S. Etemadi, and M. Safaei, Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II, III) oxide–levan nanocomposite. *Journal of Applied Polymer Science*, 2017. 134(12).
25. Mazumdar, H. and N. Haloi, A study on Biosynthesis of Iron nano particles by *Pleurotus* sp. *Journal of Microbiology and Biotechnology Research*, 2017. 1(3): p. 39-49.
26. Basavegowda, N.,, Green fabrication of ferromagnetic Fe 3 O 4 nano particles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. *New Journal of Chemistry*, 2014. 38(11): p. 5415-5420.
27. B.Lavanya , Y. Aparna and M.V.Ramana: Green Synthesis of Nickel Oxide Nanoparticles using Betel Leaf Extract and Oxalis stricta Leaf Extract and their Characterization, *Biological Forum*, 2024, 16(7), 36-43.
28. B.Lavanya , Y. Aparna and M.V.Ramana: Dielectric Properties Of Zinc Oxide Nanoparticles Synthesized With Terminalia Mantaly Leaf Extract, *Journal of emerging Technologies and Innovative research*, 2023, 10,2, 55-61.