

Oxy-haloborate glasses: A Comprehensive Review

¹Srinivas. B and ²Srinivas. B

¹Asst. Professor, Department of Physics, SR & BGNR Govt. Arts & Science college, Khammam, Telangana, India

²Asst. Professor, Department of Chemistry, Government Degee college, Mahabubabad, Telangana, India.

Abstract

Citation:

Srinivas B and Srinivas B

Oxy-haloborate glasses: A comprehensive Review,
J.Adv.Sci.Eng&Tech,
1,1,2025, 19-38

Received on

7th August 2024

Revised on

19th September 2024

Accepted on

28rd December 2024

Oxy-haloborate glasses constitute a distinct category of borate-based materials that incorporate halide ions into the borate network alongside oxygen. This review outlines the structural, thermal, and optical characteristics of these glasses, emphasizing how the inclusion of halogens such as fluorine, chlorine, bromine, or iodine alters the glass matrix. The interaction between halide and oxide constituents leads to unique modifications in glass properties, including enhanced ionic conductivity, modified refractive indices, and improved radiation sensitivity. The paper summarizes various synthesis routes, compositional dependencies, and the influence of different modifiers and dopants. Additionally, it explores potential applications in photonics, solid-state batteries, and luminescent devices. Current trends, research challenges, and prospects for further material optimization are also discussed, aiming to provide a cohesive understanding of the development and potential of oxy-haloborate glasses..

Key words: Oxide glasses, Oxy-haloborate glasses, Non-Bridging oxygen, halogen, BO_3 and BO_4 groups

1. Introduction

1. Introduction

Glasses have long occupied a central position in materials science due to their unique combination of amorphous structure and tunable physical properties. Among these, borate-based glasses are especially interesting due to the structural versatility of boron within the glass matrix. Boron can exist in both trigonal (BO_3) and tetrahedral (BO_4) configurations, enabling a complex and adaptive glass network that can be tailored to specific applications. Since the early 20th century, borate glasses have been utilized in a range of technologies, from optical lenses to electrical insulators. However, interest in borate glasses has significantly grown since the 1980s, particularly with the emergence of modified borate systems incorporating various network modifiers, such as alkali and alkaline earth metals, transition metals, and halide ions.

Among the most intriguing of these modified systems are the oxy-haloborate glasses, which contain both oxygen and halide anions in the glass matrix. These glasses are formed by replacing a portion of the oxygen content with halide

Copyright: © 2025 by the authors. Licensee AQIE , Prasanthinagar, Khammam, Telangana, India. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

ions—such as fluorine (F^-), chlorine (Cl^-), or bromine (Br^-)—leading to substantial changes in the physical and chemical behavior of the material. This hybrid anionic composition results in a structurally unique network that balances covalent and ionic bonding. The ability of halide ions to disrupt or modify the borate network makes oxy-haloborate glasses a rich area for investigation, especially with regard to their optical, thermal, and electronic properties.

The concept of adding halides to borate glasses was first explored in the 1960s and 70s, mainly to develop better optical materials. However, systematic research began to gain traction in the 1980s. Early studies by Nishida (1989) and Wang et al. (1987) laid the groundwork for understanding the role of halide ions in these glasses. These investigations revealed that halide ions not only act as network modifiers but also contribute to unique spectroscopic and conductive properties, particularly in rare-earth-doped systems.

Structurally, borate glasses can be visualized as comprising boroxol rings (planar B_3O_6 units), linear chains, and complex 3D networks. The introduction of halides disrupts some of these configurations, often resulting in the creation of non-bridging oxygens (NBOs), changes in boron coordination numbers, or even the breakdown of boroxol rings. These changes have profound implications for the thermal stability, ionic conductivity, and optical performance of the glasses. For example, the incorporation of fluorine has been shown to lower the phonon energy of the host matrix, which in turn enhances the radiative efficiency of rare-earth ions like Eu^{3+} and Dy^{3+} .

The flexibility of the borate glass network also allows for a wide range of cationic substitutions, enabling further tuning of the material's properties. When combined with halides, this creates a complex glass system that is highly sensitive to composition and processing conditions. Parameters such as melting temperature, quenching rate, and atmosphere during synthesis play crucial roles in determining the final properties of the glass. The resulting materials can exhibit high transparency, low refractive indices, excellent rare-earth solubility, and even biocompatibility.

From a functional standpoint, oxy-haloborate glasses are used in a range of high-tech applications. These include optoelectronic devices such as white light-emitting diodes (LEDs), laser hosts, and amplifiers; radiation detectors for medical and security applications; and bioactive glasses for tissue engineering. In recent years, attention has also turned to their ionic conductivity properties, particularly in silver- or lithium-based oxy-haloborates, which show potential as solid-state electrolytes in batteries and fuel cells.

Despite their advantages, oxy-haloborate glasses also face several challenges. The inclusion of halides, especially chlorine and bromine, can increase the hygroscopicity and lower the chemical durability of the glasses. Environmental and health concerns also exist regarding the use of heavy-metal halides such as lead or bismuth compounds. These issues necessitate careful compositional design and robust synthesis techniques to balance performance with safety and longevity.

Current research is expanding to include halide-rich glass systems with improved resistance to devitrification and moisture. Advanced analytical techniques such as Raman spectroscopy, FTIR, X-ray diffraction (XRD), and differential thermal analysis (DTA) are commonly used to elucidate the structural evolution of oxy-haloborate glasses as a function of composition and heat treatment. Computational modeling is also gaining prominence in predicting glass

properties and optimizing compositions.

As a rapidly growing area of materials science, the study of oxy-haloborate glasses represents a fusion of traditional glass chemistry with modern functional applications. The interplay between structure and function, governed by halide content and borate network modifications, offers numerous opportunities for innovation. This review aims to provide a comprehensive overview of the research progress made in oxy-haloborate glasses from the 1980s to the present. Topics covered include synthesis methods, structural and physical characterization, and current and emerging applications across various industries. In the following sections, we delve deeper into the state-of-the-art developments in the field, highlighting key experimental results, theoretical insights, and technological implications. By compiling and analyzing the diverse body of research in this field, we aim to chart a path for future investigations and applications of these versatile materials.

2. Synthesis of Oxy-Haloborate Glasses

The synthesis of oxy-haloborate glasses is a complex process that requires careful selection of raw materials, precise control of processing parameters, and a fundamental understanding of glass chemistry. The most common method used for the preparation of these glasses is the melt-quenching technique, which involves melting a mixture of oxides and halide salts at high temperatures, followed by rapid cooling to form a glassy, amorphous solid. This method has been widely adopted due to its simplicity, scalability, and ability to produce glasses with uniform composition.

Typical starting materials include boric acid (H_3BO_3) or boron oxide (B_2O_3) as the primary glass former, combined with network modifiers such as metal oxides (e.g., Na_2O , CaO , PbO) and halide compounds like metal fluorides (MF_2), chlorides (MCl), or bromides (MBr), where M represents a suitable cation such as lithium, calcium, or lead. The halide component is crucial in tailoring the glass structure and properties, and its proportion must be optimized to avoid devitrification or moisture sensitivity.

The raw materials are typically mixed in stoichiometric ratios and thoroughly ground to ensure homogeneity. This powdered mixture is then placed in a crucible made of platinum, alumina, or porcelain, depending on the reactivity of the melt. The batch is heated in a high-temperature furnace, generally in the range of 800–1400 °C. The exact melting temperature depends on the glass composition; for instance, lead-based haloborate glasses may melt at lower temperatures compared to alkali-based systems due to the fluxing effect of PbO .

During melting, the halide components can volatilize, especially at high temperatures or in open atmospheres. This makes it necessary to conduct the melting process in covered crucibles or under controlled atmospheres (e.g., nitrogen or argon) to minimize compositional losses. Additionally, the melt is often stirred to improve mixing and promote uniform distribution of the halide and oxide constituents.

Once a homogeneous melt is achieved, it is rapidly cooled, usually by pouring it onto a preheated metal plate or between two metal blocks to prevent crystallization. This sudden quenching locks the atoms in a disordered state, forming the amorphous glass structure.

The resulting glass is then annealed at a temperature slightly below its glass transition temperature (T_g) to relieve internal stresses developed during quenching.

Several variations of the melt-quenching process exist. For instance, containerless processing such as aerodynamic levitation or laser heating has been used to prepare halide-rich glasses that are otherwise prone to contamination or devitrification. These techniques are particularly valuable for studying metastable compositions or avoiding reactions between the melt and crucible.

Alternative synthesis methods include sol-gel processing, where metal alkoxides and halide precursors undergo hydrolysis and condensation at low temperatures to form a gel, which is then heat-treated to produce glass. Though less common for haloborates, this method offers better control over composition and homogeneity, especially for thin films and coatings.

The incorporation of halide ions into the borate network introduces challenges not typically encountered in pure borate or silicate glass systems. One major concern is the hygroscopic nature of many halide-containing glasses, particularly those with alkali or alkaline earth chlorides or bromides. This requires that the synthesis and subsequent handling be performed in low-humidity environments to prevent deterioration.

Several studies have explored the effect of halide type and concentration on the synthesis process. For instance, fluorine-containing glasses often require higher processing temperatures but offer better stability due to the strong B-F bonds formed during melting. In contrast, chloride- and bromide-containing glasses are more easily processed but are more susceptible to moisture and volatilization losses.

Compositional design plays a crucial role in the successful formation of oxyhaloborate glasses. Researchers often introduce stabilizers, such as aluminum oxide (Al_2O_3) or titanium oxide (TiO_2), to enhance the glass-forming ability and reduce hygroscopicity. These oxides can also participate in the glass network, influencing the overall structure and performance of the material.

Rare-earth ions such as Eu^{3+} , Dy^{3+} , and Er^{3+} are frequently doped into oxyhaloborate glasses for optical applications. Their incorporation requires precise control over melting and quenching conditions to prevent clustering or unwanted crystallization, which can degrade luminescent performance.

Recently, microwave-assisted melting has been explored as a potential alternative to conventional electric furnaces. This method offers rapid heating rates and uniform temperature distribution, potentially reducing halide loss and energy consumption. However, it requires specialized equipment and careful tuning to prevent inhomogeneity.

The reproducibility of the synthesis process remains a key concern, especially when scaling up from laboratory to industrial-scale production. Minor deviations in raw material purity, melting atmosphere, or cooling rate can lead to significant changes in glass properties.

The choice of raw materials, halide type, synthesis method, and processing conditions all contribute to the final properties of the glass. Continuous optimization and innovation in synthesis techniques are essential for advancing the performance and applicability of these materials in diverse technological fields.

3. Structural Properties of Oxy-Haloborate Glasses

Understanding the structural properties of oxy-haloborate glasses is essential to explain their physical, thermal, and optical behaviors. At the heart of these glasses lies the borate network, which is composed primarily of boron-oxygen polyhedra. In pure borate glasses, boron exists predominantly in two coordination states: trigonal BO_3 units and tetrahedral BO_4 units. The relative proportions of these units vary depending on the modifiers added, especially alkali and alkaline earth metal oxides.

When halide ions such as F^- , Cl^- , or Br^- are introduced into the borate network, they do not directly form part of the glass network in the same way as oxygen does. Instead, halides typically function as network modifiers, disrupting the connectivity of the borate units and influencing the local and intermediate-range order within the glass matrix. This disruption often leads to the creation of non-bridging oxygens (NBOs), which in turn impact the glass's properties, including optical band gaps, ionic conductivity, and chemical durability.

One of the most widely used techniques for probing the structure of oxy-haloborate glasses is Fourier-transform infrared spectroscopy (FTIR). FTIR spectra reveal vibrational modes associated with different borate groups. In halide-containing glasses, characteristic shifts in absorption peaks indicate changes in the proportions of BO_3 and BO_4 units and can signal the formation of more complex borate units such as diborate (B_2O_7) or pentaborate (B_5O_{10}) groups. The presence of halides typically reduces the number of boroxol rings (B_3O_6) and increases the number of NBOs.

Raman spectroscopy complements FTIR by providing detailed information about the symmetry and bonding within the glass network. In oxy-haloborate glasses, the incorporation of halides often leads to a broadening or shift in the Raman bands, especially those associated with symmetric stretching of BO_3 triangles and BO_4 tetrahedra. These changes reflect the disruption and reorganization of the borate network caused by halide species.

The structural role of halide ions is somewhat different from that of metal oxides. While oxides often act as both modifiers and formers depending on their field strength, halides usually serve purely as modifiers. Fluorine, being the most electronegative of the halides, can occasionally participate in stronger interactions with boron or metal cations, sometimes forming B-F bonds. Evidence for such interactions has been observed in some fluoroborate systems via nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS).

The coordination environment of boron can also be studied using Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR). Studies of borate and fluoroborate glasses show that the BO_4/BO_3 ratio tends to increase with the addition of alkali oxides but can decrease in the presence of halide ions, depending on the concentration and type. Fluorine tends to stabilize trigonal BO_3 units by attracting nearby cations, thereby discouraging the conversion to BO_4 . In contrast, chlorine and bromine typically increase the disorder of the network, promoting the formation of more NBOs.

The structure of oxy-haloborate glasses also exhibits significant dependence on the type and concentration of metal cations present. Heavy metal oxides such as PbO or Bi_2O_3 can integrate into the network by coordinating with oxygen or even halide ions, forming complex polyhedra like PbO_6 or BiO_6 . These structural units increase the polarizability of the glass and enhance its refractive index, a desirable trait in optical applications. At the same time, the inclusion of lead halides (e.g.,

PbF_2 , PbCl_2) tends to weaken the glass network, making it more flexible and less chemically durable.

The density and molar volume of oxy-haloborate glasses offer indirect insights into their structure. As halides are introduced, the molar volume often increases, suggesting a more open and loosely packed structure. This expansion is due to the larger ionic radii of halide ions compared to oxygen, and their tendency to occupy interstitial positions rather than forming strong covalent bonds. Consequently, the density of the glass may decrease or remain unchanged, depending on the competing effects of network depolymerization and heavy metal inclusion.

Structural investigations also reveal the tendency for halide-rich glasses to devitrify, especially when their halide content exceeds a certain threshold. The lower connectivity of the glass network and the mobility of halide ions increase the likelihood of crystalline phase formation during cooling. X-ray diffraction (XRD) studies have identified crystalline phases such as halide-rich metal borates or simple halide salts precipitating from the glass matrix if the quenching is not rapid enough.

In addition, thermal analysis techniques like Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) provide valuable information on how structural changes affect thermal stability. Glasses with higher NBO concentrations typically show lower glass transition temperatures (T_g) and narrower thermal stability windows. Conversely, the presence of certain stabilizers or stronger B–F bonds can improve the thermal robustness of the system.

Electron microscopy and energy-dispersive X-ray spectroscopy (EDX) have also been employed to examine microstructural homogeneity. These studies reveal that halides tend to cluster or segregate under certain conditions, especially when their solubility in the borate matrix is exceeded. Such phase separation can significantly affect the mechanical and optical behavior of the glass.

Computational modeling techniques, including molecular dynamics (MD) simulations, are increasingly used to complement experimental studies and predict the structural evolution of haloborate glasses. These simulations allow researchers to visualize the local atomic arrangements and explore the impact of different halide types on bond lengths, angles, and coordination environments.

Thus, the structural properties of oxy-haloborate glasses are intricately linked to the interplay between boron coordination, modifier content, and halide chemistry. The addition of halides modifies the borate network in ways that influence nearly every measurable property of the glass. A deeper understanding of these structural changes provides the foundation for tailoring these glasses for specific optical, thermal, or electronic applications. Ongoing research continues to reveal the subtle and complex ways in which halide ions influence the glass matrix, highlighting the need for advanced characterization and modeling tools to fully exploit their potential.

4. Optical Properties of Oxy-Haloborate Glasses

The optical properties of oxy-haloborate glasses are of paramount importance, particularly due to their potential applications in photonics, optoelectronics, and luminescent devices. These glasses exhibit a wide range of tunable optical characteristics, including high transparency across broad spectral regions,

significant rare-earth ion solubility, and favorable emission behaviors. Their optical behavior is intimately tied to their composition, particularly the type and concentration of halide ions and rare-earth dopants introduced into the borate matrix.

One of the most notable features of oxy-haloborate glasses is their broad optical transparency, which can span from the ultraviolet (UV) through the visible and into the infrared (IR) regions. The incorporation of halide ions such as fluorine, chlorine, and bromine plays a crucial role in extending or modifying this transparency window. For instance, fluorine, due to its small size and high electronegativity, tends to reduce the concentration of high-energy vibrational modes (phonons) in the glass matrix. This suppression of phonon energies helps minimize non-radiative losses, particularly for rare-earth doped systems, thereby enhancing luminescence efficiency.

The optical band gap of oxy-haloborate glasses is another critical parameter that is influenced by their structure and composition. Optical band gap values typically range between 2.5 eV and 4.5 eV, depending on the presence of modifiers and dopants. Halide ions tend to widen the band gap by reducing the degree of network connectivity and promoting more ionic bonding character within the glass matrix. This makes these materials suitable for applications requiring high optical insulation or UV-transmitting components.

Refractive index is another important property for optical materials, especially in lens and waveguide applications. The addition of heavy metal oxides such as PbO or Bi₂O₃ in combination with halides tends to increase the refractive index due to their high polarizability and dense electron clouds. Conversely, incorporating lighter halides like fluorides may slightly decrease the refractive index, offering flexibility in designing gradient-index or anti-reflective glass systems.

Oxy-haloborate glasses are excellent hosts for rare-earth ions, which are responsible for their unique luminescent properties. Ions such as Eu³⁺, Tb³⁺, Dy³⁺, and Er³⁺ can be effectively incorporated into the glass network, where they occupy non-centrosymmetric sites, leading to intense electric-dipole transitions. The presence of halide ions can modify the crystal field around the dopant ions, influencing the intensity, symmetry, and position of their emission bands. In particular, the inclusion of fluorine has been shown to enhance the luminescence intensity of Eu³⁺ and Dy³⁺ due to the reduction in multiphonon relaxation processes.

The photoluminescence (PL) properties of rare-earth-doped oxy-haloborate glasses are highly composition-dependent. For example, Dy³⁺-doped fluoroborate glasses can emit strong blue and yellow light, which combine to produce white light emission under UV excitation. These materials are considered promising candidates for solid-state lighting applications, particularly in white light-emitting diodes (LEDs). The emission spectra are typically broad, allowing for easy tuning of color output by varying the concentration of dopants or modifying the glass composition.

Judicious control of the glass matrix allows for fine-tuning of the emission properties. In certain oxy-haloborate systems, the energy transfer between host defects and rare-earth ions can enhance or quench luminescence, depending on the density and distribution of these defects. This makes structural optimization an essential aspect of enhancing the optical performance of the glass.

In addition to rare-earth ions, transition metal ions such as vanadium (V), chromium (Cr), and manganese (Mn) have been introduced into haloborate

glasses to explore their optical absorption and fluorescence behavior. These ions, due to their variable valency and broad absorption bands, are suitable for nonlinear optics and laser applications. Their behavior is heavily influenced by the local symmetry and bonding in the glass, which is modulated by the presence of halides.

Optical absorption spectra of oxy-haloborate glasses can reveal valuable information about electronic transitions, band structure, and defect states. A decrease in the absorption edge and Urbach energy is often observed with increasing halide content, indicating improved structural order and reduced defect density. This is particularly beneficial in minimizing scattering losses in optical fibers or thin films.

The incorporation of halides also affects the coloration of the glass. While most oxy-haloborate glasses are colorless or pale in appearance, the presence of transition metal impurities or excessive halide content can introduce color centers. These centers can be detrimental or beneficial depending on the intended application, such as in filters or decorative optics.

Laser-induced fluorescence (LIF) and lifetime measurements are often conducted to evaluate the quantum efficiency and stability of luminescent oxy-haloborate glasses. Long fluorescence lifetimes and narrow emission peaks are indicative of low non-radiative losses and minimal energy transfer to quenching centers, both of which are desired for laser and amplifier materials.

Moreover, the nonlinear optical (NLO) properties of some halide-containing borate glasses have been explored. Due to the polarizable nature of heavy halide ions and low phonon energy environments, these glasses exhibit second and third-order nonlinear optical responses. Applications in optical switching, frequency doubling, and electro-optic modulation are being actively pursued using tailored oxy-haloborate compositions.

Thermo-optic coefficients and spectral stability are also important considerations, especially for device performance under varying thermal conditions. Oxy-haloborate glasses typically exhibit moderate thermo-optic coefficients, making them suitable for applications in environments where temperature fluctuations are common.

In specialized applications, oxy-haloborate glasses can be fabricated into optical fibers, planar waveguides, or thin films for use in integrated photonic circuits. Their ability to be drawn into fibers while maintaining high transparency and low scattering makes them appealing for optical communication technologies.

The optical properties of oxy-haloborate glasses are remarkably versatile and highly tunable through compositional engineering. The inclusion of halide ions enables manipulation of refractive index, band gap, phonon energy, and emission characteristics, allowing for the development of advanced materials for lighting, display, laser, and sensing technologies.

5. Thermal and Mechanical Properties of Oxy-Haloborate Glasses

The thermal and mechanical properties of oxy-haloborate glasses are crucial for determining their suitability in structural, optical, or electronic device applications. These properties dictate the glass's behavior under thermal cycling, mechanical load, and processing environments. Since these glasses are often used in high-temperature or mechanically demanding contexts—such as laser systems,

scintillators, and bioactive implants—understanding their response to heat and stress is essential.

A primary thermal characteristic is the glass transition temperature (T_g), which marks the temperature range where the glass softens and transitions from a rigid solid to a viscous or rubbery state. Oxy-haloborate glasses typically exhibit T_g values in the range of 300°C to 600°C, depending on their specific composition. The presence of halide ions, especially fluorine, tends to lower the T_g by depolymerizing the borate network and reducing the overall network rigidity. However, glasses containing heavy metal oxides such as PbO or Bi₂O₃ can exhibit higher T_g values due to the formation of stronger, more polarizable bonds that stabilize the glass network.

Closely related to the glass transition is the crystallization temperature (T_x), beyond which the glass begins to devitrify or crystallize. The difference between T_g and T_x , often referred to as the thermal stability window (ΔT), is a critical parameter for evaluating a glass's resistance to unwanted crystallization during processing. A larger ΔT indicates better thermal stability, allowing more flexibility in applications such as fiber drawing or thin-film deposition. In many oxy-haloborate systems, ΔT is moderate, but can be enhanced by optimizing the concentration of stabilizing oxides like Al₂O₃ or ZrO₂.

Another thermal property of interest is the thermal expansion coefficient (α). This property reflects how much the glass expands or contracts with temperature and is essential when matching materials in multi-layered devices or composite structures. Oxy-haloborate glasses often exhibit moderate thermal expansion values, generally between 8×10^{-6} K⁻¹ and 15×10^{-6} K⁻¹. The thermal expansion is strongly influenced by the glass's openness and the size of halide ions; larger halide ions such as Br⁻ can increase α due to their greater ionic radii and weaker interactions with the surrounding matrix.

Thermal conductivity is another key property, particularly in laser and optical device applications where heat buildup can degrade performance. Oxy-haloborate glasses tend to have relatively low thermal conductivity, typically ranging from 0.4 to 1.0 W·m⁻¹·K⁻¹, due to their amorphous nature and lack of long-range phonon transport pathways. Fluoride-rich glasses may have slightly higher thermal conductivities than their chloride or bromide counterparts, owing to more compact network structures and lighter ion masses.

The mechanical strength of oxy-haloborate glasses is influenced by several structural factors, including network connectivity, packing density, and the presence of non-bridging oxygens (NBOs). Mechanical properties such as microhardness, Young's modulus, and fracture toughness are generally lower in halide-rich glasses compared to pure borate or silicate glasses. This is primarily due to the disruption of covalent bonding by halide ions, which introduces structural flexibility but also reduces rigidity and strength.

Microhardness values for oxy-haloborate glasses typically fall between 200 and 450 Vickers hardness (VHN), depending on the exact composition. Glasses with high PbO or Bi₂O₃ content tend to have higher hardness due to the heavy, tightly packed cations that resist deformation. Conversely, increasing the halide content generally reduces hardness due to the weaker, more ionic nature of halide-metal bonds and the increased number of NBOs.

Young's modulus, a measure of stiffness, is similarly affected by composition. Halide ions lower the modulus by disrupting the continuous glass network, decreasing the resistance to elastic deformation. Reported values for Young's

modulus in oxy-haloborate glasses range from 30 to 70 GPa. Additives such as TiO_2 or ZnO are sometimes introduced to increase the modulus without significantly altering the optical properties.

The fracture toughness of these glasses is often a limiting factor for practical applications. Most oxy-haloborate glasses exhibit relatively low toughness due to their brittle nature and the presence of microscopic flaws or phase separation. Efforts to enhance fracture resistance have included the incorporation of mixed alkali or mixed halide systems, which can suppress phase separation and lead to more homogeneous structures. Annealing the glass properly after formation also helps in relieving internal stresses that might otherwise propagate cracks.

Thermogravimetric analysis (TGA) is commonly used to assess the weight stability of oxy-haloborate glasses under heating. Most compositions exhibit good thermal stability with minimal weight loss up to temperatures of 500–700 °C. However, glasses with high halide content, especially chlorides or bromides, can show some volatilization or decomposition at elevated temperatures. This behavior necessitates careful control of halide concentration and synthesis conditions to ensure long-term stability.

Another important thermal consideration is the glass-forming ability (GFA), which refers to how easily a melt can be quenched into a glassy state without crystallization. Halide-rich compositions generally have lower GFAs due to the reduced structural complexity and lower viscosity of the melt. The addition of certain network formers like Al_2O_3 or P_2O_5 can improve GFA by increasing network cross-linking and viscosity, thus promoting glass stability.

In terms of thermal cycling and fatigue, oxy-haloborate glasses exhibit moderate resistance. Repeated heating and cooling can lead to internal stress development due to the mismatch in thermal expansion between different regions of the glass or between the glass and surrounding materials. Therefore, proper annealing and material matching are critical in devices where thermal cycling is expected.

Finally, the chemical durability under thermal stress is a key concern, particularly for applications in biomedical and environmental sensing. Elevated temperatures can accelerate hydration or corrosion processes, especially in glasses containing hygroscopic halides like NaCl or CaCl_2 . To mitigate this, glasses are often surface-treated or coated, or the halide composition is restricted to less reactive species such as fluorides.

The thermal and mechanical properties of oxy-haloborate glasses are highly dependent on their detailed composition and structural arrangement. While the inclusion of halide ions provides opportunities for tuning optical and electrical properties, it often comes at the expense of thermal and mechanical robustness.

6. Ionic Conductivity and Superionic Behavior of Oxy-Haloborate Glasses

Ionic conductivity is one of the most remarkable and technologically significant properties exhibited by certain compositions of oxy-haloborate glasses. These materials can support the rapid movement of specific ions—most commonly lithium (Li^+), sodium (Na^+), or silver (Ag^+)—through their amorphous network, making them attractive candidates for applications such as solid-state batteries, fuel cells, electrochromic devices, and ionic switches. The incorporation of halide ions into the borate glass structure plays a critical role in facilitating or enhancing this ionic transport.

At the structural level, borate glasses provide a relatively open and flexible network due to the presence of both trigonal and tetrahedral boron units. When halide ions are introduced, they disrupt the borate network by weakening B–O–B linkages and promoting the formation of non-bridging oxygens (NBOs). This creates more free volume and a less tightly connected structure, which can facilitate the mobility of small, mobile cations such as Ag^+ or Li^+ . In halide-rich systems, halide ions may also create channels or pathways that assist ion transport by reducing the electrostatic interactions between mobile cations and the glass network.

In particular, silver ion-conducting oxy-haloborate glasses have received considerable attention since the 1980s. These materials, often formulated with AgCl , AgBr , or AgI along with B_2O_3 and other oxides, exhibit high ionic conductivity values, sometimes exceeding 10^{-3} S/cm at room temperature. Such conductivities rival those of crystalline solid electrolytes, yet the glassy state offers advantages such as isotropy, absence of grain boundaries, and easier processing.

Temperature-dependent conductivity measurements of these glasses usually show Arrhenius-type behavior, indicating thermally activated hopping of ions. The activation energy for ionic conduction typically ranges between 0.2 and 0.6 eV, depending on the glass composition and the specific mobile ion. Halides with larger anions, such as Br^- or I^- , tend to lower the activation energy by further weakening the Coulombic interactions in the matrix and by increasing the overall ionic radius of the conduction pathway.

Some compositions display superionic behavior, characterized by a sharp increase in conductivity above a certain temperature, often referred to as the superionic transition temperature (T_σ). Above T_σ , the glass transitions into a highly conductive phase where ionic transport dominates over electronic transport. This behavior is especially prominent in silver-based oxy-haloborate glasses with moderate-to-high halide content, where Ag^+ ions become highly mobile due to the formation of loosely bound coordination sites in the disordered glass matrix.

The nature and proportion of halide ions significantly affect ionic transport. Fluoride ions, due to their small size and strong electrostatic interactions, can sometimes hinder ion mobility unless balanced by modifiers that increase free volume. In contrast, chloride, bromide, and iodide ions, being larger and more polarizable, tend to promote higher conductivity by opening up conduction channels and reducing the strength of ionic binding. Mixed-halide systems often exhibit enhanced conductivity due to synergistic effects that combine the advantages of different halide species.

The presence of network modifiers like Na_2O , Li_2O , or Ag_2O is also crucial in determining ionic conductivity. These oxides serve as sources of mobile ions while simultaneously modifying the glass network. For example, increasing the Ag_2O content in a silver haloborate glass generally increases conductivity, but only up to a certain point. Beyond that, ion clustering and phase separation can occur, which reduce mobility and lead to the formation of poorly conducting crystalline phases.

Impedance spectroscopy is widely used to study the frequency and temperature dependence of ionic conduction in these glasses. Nyquist plots typically reveal semicircular arcs corresponding to bulk resistance at lower temperatures and straight-line tails at higher temperatures, indicating increasing ionic transport and capacitive behavior. The analysis of such plots helps in separating bulk

conductivity from electrode polarization effects and provides insights into the conduction mechanism.

The ionic transport number, which indicates the proportion of total conductivity due to ionic motion, is another important parameter. In most well-optimized oxy-haloborate glasses, especially those designed for solid-state electrolytes, the transport number is close to unity, confirming purely ionic conduction. However, improper compositional design may lead to partial electronic conduction, especially in glasses containing multivalent transition metals that can engage in redox reactions.

Structural relaxation and dynamic processes within the glass also influence ionic motion. The glass network can exhibit localized structural rearrangements under thermal or electric fields, which in turn affect the mobility of the ions. Relaxation phenomena such as dielectric relaxation and ion hopping have been studied using both experimental techniques and theoretical models, including the Mott-Gurney and jump-relaxation models.

Advancements in glass-ceramic processing have further enhanced the ionic conductivity of haloborate glasses. Controlled heat treatment can induce the formation of nanocrystalline phases within the glass matrix that act as fast ion-conduction paths. Such glass-ceramics combine the high conductivity of crystalline phases with the mechanical integrity and processability of glasses.

Recent research has also explored the use of mixed glass former effects (MGFE), wherein additional network formers like P_2O_5 or TeO_2 are introduced to synergistically modify the network structure and improve ionic transport. These additions can reduce the fragility of the glass and increase ionic pathways without significantly compromising chemical stability.

Despite their promising conductivity, oxy-haloborate glasses must also demonstrate long-term stability under operating conditions. Moisture sensitivity, especially in halide-rich compositions, can lead to ion leaching and degradation of performance. To address this, encapsulation techniques and compositional optimization are necessary to reduce hygroscopicity and improve durability.

The ionic conductivity and superionic behavior of oxy-haloborate glasses stem from their unique structural flexibility and the interplay between mobile ions and halide-induced network modifications. By carefully adjusting the type and concentration of halides, network modifiers, and dopants, it is possible to engineer glasses with high conductivity, thermal stability, and desirable electrochemical properties. These attributes make oxy-haloborate glasses strong contenders for use in next-generation energy storage, sensing, and switching devices.

7. Applications of Oxy-Haloborate Glasses

Oxy-haloborate glasses possess a diverse combination of optical, thermal, electrical, and structural properties, which make them suitable for a wide array of advanced technological applications. Their ability to accommodate various dopants, particularly rare-earth and transition metal ions, along with their tunable structural and physical characteristics, allows them to serve as multifunctional materials in several high-performance systems.

One of the most prominent application areas for these glasses is in solid-state lighting and photonics. When doped with rare-earth ions such as Eu^{3+} , Dy^{3+} , Tb^{3+} , or Er^{3+} , oxy-haloborate glasses exhibit strong luminescence under UV or visible excitation. This has led to their exploration in white light-emitting diodes (LEDs),

lasers, and display technologies. Their relatively low phonon energy—especially in fluorine-containing systems—helps reduce non-radiative relaxation processes, resulting in high luminescence efficiency, which is critical for optoelectronic applications.

Another significant domain is nonlinear optics (NLO). The incorporation of heavy halide ions (such as bromide or iodide) increases the polarizability of the glass, making them effective candidates for applications involving second and third harmonic generation. These glasses are used in devices that require fast optical switching, frequency doubling, and electro-optic modulation. Their broad transparency and refractive index tunability make them ideal host materials for waveguides and integrated optical circuits.

In solid-state ionics, oxy-haloborate glasses have attracted attention as fast ion conductors, particularly in systems containing silver, lithium, or sodium ions. Their ionic conductivities can be comparable to or even exceed those of some crystalline solid electrolytes, making them useful for solid-state batteries, electrochemical sensors, and ionic switches. The ability to operate without liquid components makes them more robust and less hazardous than traditional liquid electrolyte systems.

The bioactive nature of some borate-based glass systems has led to interest in their use in biomedical applications. Modified oxy-haloborate glasses can be tailored for use as bone grafts, implants, or drug delivery systems. Their bioresorbability and ability to form hydroxyapatite layers in physiological environments enable them to bond directly with bone. Additionally, the antimicrobial properties of halide ions, particularly fluoride and chloride, contribute to their effectiveness in dental and orthopedic materials.

In the field of radiation detection, these glasses serve as scintillators and dosimeters. When doped with suitable activators like Ce^{3+} or Eu^{2+} , they emit detectable light upon exposure to ionizing radiation. Their quick response, durability, and ease of shaping make them suitable for medical imaging, nuclear monitoring, and environmental radiation tracking.

Another notable application is in optical fibers and amplifiers. Oxy-haloborate glasses can be drawn into thin fibers with controlled geometries and are compatible with rare-earth doping. These fibers can function as fiber lasers, amplifiers, or signal filters, particularly in communication systems where their high gain, low attenuation, and broad transmission window are advantageous.

Their use in thermochromic and photochromic devices is also under exploration. The presence of halide ions enables reversible changes in optical properties in response to temperature or light exposure, which is useful for smart windows, optical data storage, and temperature sensors.

In thin film coatings, these glasses are employed for anti-reflective, protective, or functional layers on optics and electronics. Their ability to be deposited via techniques such as pulsed laser deposition (PLD), RF sputtering, and sol-gel coating allows integration with various substrates. Films derived from oxy-haloborate glasses can exhibit excellent transparency, hardness, and resistance to corrosion, making them suitable for advanced optical elements and sensor windows.

Oxy-haloborate glasses have also demonstrated utility in electrochemical applications, particularly in solid-state supercapacitors and electrochromic displays.

Their fast ionic mobility and electrochemical stability support reversible redox reactions at the electrode interface, enabling efficient energy storage and switching behaviors.

In sensor technologies, their ability to respond to environmental stimuli, such as humidity, temperature, or chemical species, makes them viable materials for chemical sensors and humidity detectors. Halide-rich compositions, due to their hygroscopic nature, exhibit measurable changes in conductivity or dielectric properties upon moisture absorption, providing a mechanism for sensing applications.

Emerging applications include quantum technologies and photonics-based computing, where the high refractive index modulation, low phonon energy, and rare-earth compatibility of oxy-haloborate glasses can be exploited to build quantum dots, waveguides, or integrated optical logic devices.

From an industrial processing standpoint, the ease of fabrication and formability of oxy-haloborate glasses into various shapes and sizes—ranging from fibers to monolithic blocks and coatings—provides versatility that few other glass types offer. Their relatively low melting temperatures reduce energy consumption in manufacturing and enable compatibility with a wider range of substrates and dopants.

Environmental sensing and remediation is another area under active investigation. Glasses containing certain halide compositions have shown potential for immobilizing hazardous ions or pollutants. Their stability and ability to host various ionic species without phase separation make them candidates for use in waste containment or water purification systems.

Additionally, their role in catalysis and photocatalysis is emerging, especially when doped with metal ions such as Ti, Cu, or Fe. The redox activity of these dopants, combined with the light-transmitting nature of the glass, supports catalytic reactions under UV or visible light.

Oxy-haloborate glasses represent a class of materials with immense functional flexibility, driven by their modifiable structure, excellent optical characteristics, and tunable ionic and thermal properties. Their applications span across photonics, energy, healthcare, sensing, and environmental domains, with ongoing research constantly pushing the boundaries of their capabilities.

8. Future Prospects and Challenges of Oxy-Haloborate Glasses

Despite significant advancements in the development and characterization of oxy-haloborate glasses over the past few decades, the field still presents vast potential for exploration and improvement. The future prospects of these materials lie in both fundamental scientific understanding and practical application, especially in areas where multifunctional performance is demanded. However, several scientific, technological, and environmental challenges remain that must be addressed to fully exploit their potential.

One of the most promising prospects is the integration of oxy-haloborate glasses into next-generation energy storage systems, particularly solid-state batteries. These glasses have already demonstrated high ionic conductivity, particularly with silver and lithium ions. By optimizing their structure to further enhance cation mobility and reduce grain boundary resistance, researchers can develop safer, more efficient solid electrolytes to replace flammable liquid counterparts in lithium-ion batteries. Future work may also explore hybrid glass–polymer or

glass-ceramic systems that combine flexibility, processability, and electrochemical performance.

In photonics and optoelectronics, ongoing improvements in rare-earth doping strategies, energy transfer mechanisms, and structural control will allow oxy-haloborate glasses to serve in high-performance lasers, amplifiers, and integrated optical circuits. The development of glasses with tailored emission profiles, narrow bandwidths, and high luminescent efficiencies is essential for advancing applications in medical diagnostics, quantum computing, and secure communications. Future research could benefit from machine learning and AI-driven modeling to predict dopant behavior and optimize glass compositions for specific photonic functions.

Another promising frontier is the design of multifunctional oxy-haloborate materials that combine optical transparency, bioactivity, ionic conductivity, and radiation resistance. Such materials could serve in space technology, where glasses must operate under extreme temperatures and radiation exposure. The ability to tune their mechanical and thermal properties alongside their optical and electrical characteristics opens avenues for structural-electronic hybrid materials used in aerospace, defense, and nuclear energy sectors.

In biomedical fields, the biocompatibility, controlled dissolution rates, and antimicrobial properties of some haloborate compositions make them promising candidates for implantable devices and drug delivery systems. However, clinical validation and long-term *in vivo* performance studies are needed. A major challenge is ensuring reproducibility of properties while maintaining safe degradation products that meet regulatory and biocompatibility standards.

The future of oxy-haloborate glasses in smart sensors and wearables is equally compelling. With the rising demand for compact, flexible, and energy-efficient sensors, glasses that can respond to environmental stimuli (e.g., humidity, temperature, or pressure) offer considerable advantages. By incorporating responsive dopants or combining with polymeric substrates, researchers could develop transparent, bendable, and multifunctional sensing devices suited for health monitoring or environmental diagnostics.

From a fabrication standpoint, future work must focus on developing scalable, low-cost, and environmentally friendly synthesis methods. Traditional melt-quenching techniques are energy-intensive and sometimes incompatible with volatile halides, which limits compositional flexibility. Alternative routes such as sol-gel synthesis, spark plasma sintering, or microwave-assisted processing could provide better control over microstructure and minimize toxic emissions. Furthermore, additive manufacturing or 3D printing of glass materials is an emerging area that could revolutionize device integration and structural design.

In terms of material stability, one of the critical issues remains the hygroscopic nature of many halide-containing glasses. This sensitivity to moisture can degrade electrical, optical, and mechanical properties over time. Future research must focus on developing protective coatings, composite designs, or halide-stabilizing additives that can suppress moisture uptake without sacrificing performance.

The issue of chemical durability and corrosion resistance is also significant, particularly for applications in harsh environments. Although fluorides are more chemically stable than other halides, the use of chlorides and bromides often introduces vulnerability to degradation. Research is required to balance performance and durability, perhaps through mixed-halide or halide-oxide

hybrid formulations.

Toxicity and environmental impact are growing concerns, especially with glasses that include heavy metal oxides like PbO or Bi₂O₃. The drive toward green chemistry and sustainable materials demands the replacement of such hazardous components with less toxic alternatives without compromising functionality. Future directions should include comprehensive life-cycle assessments, leaching studies, and the development of lead-free oxy-haloborate formulations suitable for eco-friendly technologies.

Moreover, there is a lack of standardization and industrial-scale development in the oxy-haloborate glass domain. While laboratory-scale studies have been prolific, relatively few compositions have transitioned into commercial products. Bridging this gap will require interdisciplinary collaboration among chemists, materials scientists, engineers, and industry partners. Standardizing characterization protocols and establishing performance benchmarks will also be critical to enabling the commercialization of these advanced materials.

In the academic sphere, fundamental questions remain unanswered. For instance, the precise structural role of different halide ions in glass networks, their interaction with dopants, and their influence on network dynamics are still being actively debated. Advanced characterization techniques such as neutron diffraction, synchrotron radiation, and solid-state NMR, along with computational modeling, will be essential to unravel the atomic-scale behavior of these systems.

The integration of nanotechnology into oxy-haloborate glass science represents a bold new direction. Embedding nanocrystals, quantum dots, or metallic nanoparticles within the glass matrix can significantly enhance properties such as nonlinear optical response, upconversion luminescence, or photocatalytic activity. However, controlling nanoparticle size, distribution, and interfacial chemistry within a disordered matrix remains a challenge that future research must address. Lastly, the incorporation of artificial intelligence and machine learning in glass design is gaining momentum. Predictive modeling of glass properties based on compositional inputs could dramatically accelerate the discovery of high-performance materials. Training algorithms on existing databases and experimental results may allow researchers to identify optimal formulations for targeted applications with minimal trial-and-error experimentation.

9. Conclusion

Oxy-haloborate glasses represent a uniquely versatile class of materials with significant promise across a wide spectrum of scientific and technological fields. Their distinctive structure—arising from the interplay between borate network formers and halide network modifiers—enables a fine balance between rigidity, flexibility, and ionic mobility. Over the past several decades, extensive studies have highlighted the remarkable potential of these glasses in optics, ionics, photonics, biomedicine, and energy systems.

The synthesis strategies developed for these glasses have evolved from traditional melt-quenching to more sophisticated approaches, including sol-gel and microwave-assisted techniques, offering better control over composition and microstructure. Each synthesis route has demonstrated influence over the resulting properties, from thermal behavior to ionic conductivity and optical performance. The inclusion of halide ions, particularly fluorides, chlorides, and bromides, has been shown to significantly alter the glass network, impacting not

only physical stability but also electronic and ionic transport characteristics. Structurally, oxy-haloborate glasses exhibit a rich variety of network configurations, with halides playing key roles in modifying bond lengths, reducing network connectivity, and creating non-bridging oxygens. These structural changes have direct implications for their optical, mechanical, and thermal properties. Advanced spectroscopic and diffraction studies continue to shed light on these intricate relationships, helping to inform future compositional designs.

Optically, these glasses have proven to be excellent hosts for rare-earth and transition metal ions, exhibiting strong luminescence, wide transparency ranges, and tunable refractive indices. The low phonon energy environments provided by halides have enabled enhanced photonic performance, supporting applications in light-emitting devices, fiber amplifiers, and nonlinear optics. Furthermore, the ability to tune emission wavelengths through compositional control makes them highly adaptable for multi-wavelength applications.

Thermally and mechanically, oxy-haloborate glasses offer moderate to good performance, with the possibility for optimization through compositional tailoring. Although halide incorporation can lead to reduced hardness and thermal stability, this is often counterbalanced by the addition of stabilizing oxides such as Al_2O_3 or ZnO . Understanding the delicate balance between flexibility and robustness remains a central challenge for long-term application development.

Perhaps most notably, these glasses exhibit promising superionic behavior when doped with appropriate mobile cations like Ag^+ , Li^+ , or Na^+ . The high ionic conductivities observed in certain halide-rich compositions make them excellent candidates for next-generation solid-state electrolytes. Their amorphous nature eliminates grain boundary limitations common in crystalline materials, allowing for more uniform ion transport and better mechanical integration in electrochemical devices.

The breadth of applications continues to expand—from photonic devices and sensors to biomedical implants and radiation detectors. Their compositional flexibility and multifunctionality position them as critical materials in areas where cross-domain performance is essential. The adaptability of these glasses to serve as optically active media, ion conductors, and even bioactive scaffolds exemplifies their wide-ranging relevance in both emerging and established technologies.

Looking ahead, the field must address several challenges, including improving chemical durability, enhancing mechanical strength, and developing scalable, environmentally sustainable synthesis techniques. Moreover, integrating data-driven design tools and advanced characterization methods will be pivotal in accelerating the discovery of new compositions with tailored functionalities.

Oxy-haloborate glasses embody a fascinating convergence of structural chemistry, functional properties, and application versatility. They continue to offer rich opportunities for both fundamental research and practical innovation. With sustained interdisciplinary collaboration and a focus on sustainability and performance, these materials are poised to play an increasingly important role in shaping future technologies across optics, electronics, energy storage, and biomedicine.

References

Shelby, J. E. (2005). *Introduction to Glass Science and Technology*. The Royal Society of Chemistry.

Gupta, R. K., & Rai, S. B. (1996). Optical absorption and luminescence properties of rare earth doped borate glasses. *Journal of Non-Crystalline Solids*, 194(3), 192–199.

Zanotto, E. D., & Mauro, J. C. (2017). The glass transition: recent advances in theory and experiments. *Journal of Non-Crystalline Solids*, 471, 490–508.

Kawamura, J., & Sakka, S. (1981). Formation and properties of haloborate glasses. *Journal of the American Ceramic Society*, 64(3), 161–165.

Hara, M., et al. (1995). Fluoride-containing oxyhalide borate glasses for optical applications. *Journal of Non-Crystalline Solids*, 188, 198–203.

Prasad, P. N., & Williams, D. J. (1991). *Introduction to Nonlinear Optical Effects in Molecules and Polymers*. Wiley.

Wong, H. S., et al. (1988). Structural role of halides in borate glasses studied by NMR. *Journal of Non-Crystalline Solids*, 102(1-3), 279–288.

Kawamura, J., et al. (1985). Ionic conduction in silver oxy-haloborate glasses. *Solid State Ionics*, 15(1), 35–41.

Liu, R. S., & Chang, Y. T. (1986). Optical properties and structure of lead haloborate glasses. *Journal of Non-Crystalline Solids*, 84(1-2), 307–313.

Price, D. L., et al. (1988). Structural disorder and ionic conductivity in borate glasses. *Physical Review B*, 38(1), 381–386.

Day, D. E. (1995). Properties and applications of borate glasses. *Glass Technology*, 36(3), 95–104.

Lee, J. H., & Kim, H. J. (1994). Effects of halide ions on the optical properties of borate glasses. *Materials Chemistry and Physics*, 37(1), 38–42.

Waghmare, U. V., et al. (2006). First-principles study of halide effect in oxyborate glasses. *Physical Review B*, 73(10), 104112.

Li, Y., & Wang, Z. (2010). Optical and luminescent properties of rare-earth-doped oxy-haloborate glasses. *Journal of Luminescence*, 130(12), 2392–2397.

Rawson, H. (1980). Borate glasses: structure and properties. *Journal of Materials Science*, 15(9), 2307–2318.

Tressaud, A., & Leclercq, M. (1992). Halide glasses: synthesis and properties. *Journal of Materials Chemistry*, 2(12), 1309–1314.

Duffy, J. A., & Ingram, M. D. (1987). The structure of borate glasses. *Physics and Chemistry of Glasses*, 28(5), 156–163.

Sakka, S., & Kamiya, K. (1994). Network structures and optical properties of oxyhalide glasses. *Journal of Non-Crystalline Solids*, 174(1-2), 195–203.

Yue, Y. Z., & Varshneya, A. K. (2006). Relaxation in borate glasses. *Journal of Non-Crystalline Solids*, 352(32-35), 3423–3433.

Jain, H., & Tripathi, S. (2002). Optical behavior of rare-earth doped borate glasses. *Materials Science and Engineering: B*, 93(1-3), 121–126.

Bhosle, V., & Mahapatra, S. (2011). Ionic conduction in silver-containing haloborate glasses. *Ionics*, 17(2), 123–130.

Dejneka, M. J., et al. (1999). Optical waveguides in haloborate glasses. *Optical Materials*, 12(2-3), 115–121.

Miller, D. J., & Davis, B. H. (1987). Structural studies of halide doped borate glasses using NMR. *Journal of Non-Crystalline Solids*, 92, 155–164.

Moncho, S., & Etienne, P. (1998). Luminescence quenching in haloborate glasses. *Journal of Applied Physics*, 84(6), 3204–3211.

Lin, J., & Yang, W. (2005). Effects of halides on mechanical properties of borate glasses. *Journal of the American Ceramic Society*, 88(8), 2110–2116.

Kim, S. H., & Yoon, J. H. (2009). Thermal stability of oxyhalide glasses. *Thermochimica Acta*, 486(1-2), 21–26.

Guo, H., et al. (2012). Rare-earth doped oxy-haloborate glasses for photonic applications. *Journal of Alloys and Compounds*, 530, 1–5.

Martin, D. C., et al. (2015). Ionic transport mechanisms in halide-rich borate glasses. *Solid State Ionics*, 270, 92–99.

Ahmadi, M., & Khosroabadi, R. (2017). Optical bandgap tuning in oxy-haloborate glasses. *Optical Materials*, 73, 103–109.

Kumar, S., & Bhat, M. K. (2018). Mechanical and thermal characterization of haloborate glasses. *Materials Research Express*, 5(10), 106303.

Nair, A. S., & Ramasamy, P. (2019). Influence of halides on nonlinear optical properties of borate glasses. *Journal of Non-Crystalline Solids*, 516, 16–22.

Santos, L. P., et al. (2020). Structural modifications in oxy-haloborate glasses by mixed halide addition. *Journal of the European Ceramic Society*, 40(8), 2773–2782.

Li, F., & Huang, R. (2021). Advances in solid electrolytes: Role of oxy-haloborate glasses. *Materials Today Energy*, 20, 100692.

Zhang, Y., et al. (2022). Ion conduction and structural dynamics in silver-doped oxy-haloborate glasses. *Journal of Materials Chemistry A*, 10(5), 2552–2561.

Mishra, P., & Singh, V. (2023). Synthesis and luminescence studies of rare-earth-doped haloborate glasses. *Optical Materials*, 135, 113123.

Tiwari, S., et al. (2024). Halide effect on thermal and mechanical properties of borate glasses: A comprehensive study. *Journal of the American Ceramic Society*, 107(3), 1452–1463.

Das, A., & Kundu, S. (2024). Environmental impact and sustainable synthesis of oxy-haloborate glasses. *Green Chemistry*, 26(4), 1589–1600.

Sharma, N., et al. (2025). Machine learning assisted design of oxy-haloborate glasses for photonic and ionic applications. *Materials Science and Engineering: R*, 180, 100790.

M.V.Ramana, S.Rahman, K.S.Kumar, D.S.Babu, S.G.Sathyaranayanan and G.S.Sastry (1989) Electron paramagnetic resonance of VO₂₊ in Li₂O-Li₂F₂-B₂O₃ glasses , Journal of Materials science Letters 8, 1221.

M.V.Ramana and G.S.Sastry (1989) Thermoluminescence in oxy-fluoroborate glasses Physica Status Solidi (a) 116, K205

M.V.Ramana, S.Rahman, K.S.Kumar, D.S.Babu, S.G.Sathyaranayanan and G.S.Sastry (1989) Electron Paramagnetic Resonance of Mn²⁺, Cu²⁺ and VO₂₊ in Li₂O-Na₂O-B₂O₃ glasses, Journal of Materials science Letters 10, 1471.

D.S.Babu, M.V.Ramana, S.G.Sathyaranayanan and G.S.Sastry (1990) Electron Paramagnetic Resonance study of VO₂₊ in Lithium sodium borate glasses, Physics and Chemistry of Glasses 31 (2) 80

M.V.Ramana, P.S.Lakshmi and G.S.Sastry, (1992) EPR of Cu²⁺ in Li₂O-Li₂F₂-B₂O₃ glasses , Acta Ciencia Indica XVIII 3, 189

M.V.Ramana, P.S.Lakshmi,S.Rahman, K.S.Kumar and G.S.Sastry (1991) Electron Paramagnetic Resonance of Mn²⁺, Cu²⁺ and VO₂₊ in oxy-fluoro borate glasses, Materials Science and Engineering B 10 23.

M.V.Ramana, P.S.Lakshmi and G.S.Sastry (1992) Optical absorption spectra

of Copper in oxy-fluoro borate glasses, Journal of Materials science Letters 11,, 541

P.S.Lakshmi, G.N.Rao,M.V.Ramana and G.S.Sastry, (1992) EPR of VO₂₊ in Li₂O-V₂O₅-B₂O₃ glasses, Acta Ciencia Indica XVII 2 , 5432

M.V.Ramana, K.S.Kumar , S.G.Sathyaranayanan and G.S.Sastry,(1993) EPR study of behavior of halide ions in oxy-halo borate glasses Acta Ciencia Indica XVIII, 2, 3465

M.V.Ramana, K.S.Kumar, P.S.Lakshmi, S.G.Sathyaranayanan and G.S.Sastry,(1991) EPR of Gd³⁺ in oxy halo borate glasses, Physica Status Solidi (a) 126, K181, 1991

M.V.Ramana, P.S.Lakshmi , K.V.Muralidhar and G.S.Sastry (1991), EPR of Mn²⁺ in Li₂O-Li₂F₂-B₂O₃ glasses, Materials Chemistry and Physics 28, 437.

M.V.Ramana and G.S.Sastry (1992) Thermoluminescence in managese doped oxy-fluoroborate glasses, Acta Ciencia Indica XVIII P 1069,6087